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Abstract. A general expression is derived for the minimal distanceε(�) between points of a
cut and project quasicrystal6(�) in Rn with a convex acceptance window�. The study of
minimal distances amounts to the study of one-dimensional quasicrystals and their rescalings
which occur in6(�). For ann-dimensional ball as�, the exact value ofε(�) is calculated for
any radius; for� ‘close’ to a ball, a simple formula is given; for all� upper and lower bounds
for ε(�) are found. The latter are easy to use even when� is of a complicated shape.

1. Introduction

Typical interatomic distances in solids are a few angstroms, varying only slightly from a
solid to solid and/or between atoms of different types. In a quasicrystal the distances are
around 2.5–3Å [5]. Why should one study distances over a much wider range?

One can bring forward several reasons to study minimal distances in quasicrystal-like
point sets.

Distances in a mathematical model of a quasicrystal must be scaled appropriately before
they can be compared with absolute measures of a physical quasicrystal. In fact it is the
physical quasicrystal which determines the scale of a model.

Quasicrystal point sets are of interest in physics and mathematics for reasons which
go beyond applications in quasicrystal physics. They can be viewed as a generalization of
lattices. Similarly as lattices are encountered outside crystallography, one may expect that
their aperiodic generalizations will find a wider use.

Finally, knowledge of minimal distances in quasicrystals can point towards other
properties of quasicrystals and methods of establishing them [7].

The aim of this paper is to describe the minimal distances in the cut and project
quasicrystals. Therefore we adopt in this work a rather general form of the definition
of such quasicrystals, following [2, 16]. Thus, a quasicrystal is a point set inRn and its
coordinates relative to some basis are in the ring of integers, denotedZ[τ ], of the quadratic
extensionQ[τ ] of the rational numbers byτ = 1

2(1+
√

5). The cut and project method
implies the presence of a bounded acceptance window� and a mapping (star map) under
which all points of the quasicrystal are mapped into�.

The size of the acceptance window of a given quasicrystal inRn determines the density
of its points–atoms. It is generally understood and it is also an immediate consequence
of the definition (1) below, that the larger the window volume, the higher the density of
quasicrystal points. Apparently the only quantitative result in the literature about an explicit
link between the linear dimensions of the acceptance window and the minimal distance in
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the corresponding quasicrystal is found in [12] (see it also in [16]), and that is just for a
single special case.

This paper is the second in a series of articles about rigorously established general
algebraic properties of cut and project quasicrystals. The others are [6, 7]. In the first of
them [6], we describe all scaling symmetries of a cut and project quasicrystal with convex
�. More precisely, we show that the set of all scaling factors corresponding to any given
point is a one-dimensional quasicrystal for the internal inflation centres (quasicrystal points).
Similarly the scaling factors belonging to external inflation centres are given as subsets of
points of certain one-dimensional quasicrystals. The content of this paper can be viewed
as a general answer to the question raised in [12] about minimal distances in the cut and
project quasicrystals.

Distances between points of one-dimensional quasicrystals are studied in section 3. The
minimal distances in a general quasicrystal with connected acceptance-window interval is
found as a function of the length of the interval. Any such quasicrystal is made of two or
three distinct tiles. Subsequently [7] we will see that adjacent tiles, which are distinct, have
lengths in the ratioτ (or τ−1).

The knowledge of the structure of one-dimensional quasicrystals is crucial for the study
of higher dimensional quasicrystals (section 4). The latter are collections of one-dimensional
subquasicrystals intertwinned and rescaled. In particular, any two points of a higher
dimensional quasicrystal fix a straight line containing an infinite number of quasicrystal
points. After an appropriate affine mapping they form a one-dimensional quasicrystal.

A general expression for the minimal distance of ann-dimensional cut and project
quasicrystal is given in theorem 5.2 of section 5. It depends on the shape of the acceptance
window�. For� satisfying a special property (27), the expression is essentially simplified
(theorem 5.3). The lower and upper bounds for the minimal distance suitable for any�

may also turn out to be practically useful.
Properties of quasicrystals shown in this paper can be seen on specific quasicrystals

in literature (for example in [2–5, 11, 13–15]). Exceptions are the 2-tile quasicrystals of
Penrose as we explain in the concluding example of this paper.

2. Mathematical preliminaries

Let us recall the basic algebraic structures used in the the theory of cut and project
quasicrystals.

Consider the algebraic number fieldQ[
√

5] and its nontrivial automorphism denoted
by ′ and defined bya + b√5→ a − b√5 with a, b ∈ Z. In particular,

τ = 1
2(1+

√
5) −→ τ ′ = 1

2(1−
√

5).

Here τ and τ ′ are the roots of the algebraic equationx2 = x + 1. The ring of integers of
Q[
√

5] is denoted byZ[τ ] = Z+ Zτ .
It is known thatZ[τ ] is a Euclidean domain, in particularZ[τ ] is a unique factorization

domain. For a setF ⊂ Z[τ ], one has gcd{F ′} = (gcd{F })′. The group of units ofZ[τ ]
consists of{±τ k|k ∈ Z}. It is also known that each primep of Z of the formp ≡ ±2
(mod 5) remains prime inZ[τ ]. Each primep of Z of the formp ≡ ±1 (mod 5) splits
as a conjugated pairp = qq ′ with q 6= q ′.

Let M be a torsion freeZ[τ ]-module of rankn with a basis{α1, . . . , αn} ⊂ Rn, i.e.
M = ∑n

i=1Z[τ ]αi . M is a Z[τ ]-lattice if it spansRn over R. We will assume in the
following thatRn is equipped with a Euclidean norm.
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Let M ⊂ Rn be aZ[τ ]-lattice for which the standard dot product isQ[
√

5]-valued
on M × M. A ‘star map’ is a mappingf : M → M∗ ⊂ Rn such thatf is semilinear
with respect to conjugation′ on Z[τ ] andM∗ spansRn. Usually a star map is denoted by
x → x∗. In the one-dimensional case, we useM = Z[τ ] with star mapx → x ′.

Definition 2.1.Let M be aZ[τ ]-lattice inRn with a star map∗. Let� ⊂ Rn be a bounded
convex set with a non-empty interior called an acceptance window. The cut and project
quasicrystal is the set

6(�) = {x ∈ M|x∗ ∈ �}. (1)

It is explained in [2, 16] and again in [6], why the quasicrystal6(�) is actually of the
cut and project type. It is shown in [10] that6(�) is a ‘Delaunay set’, i.e.
• there is anε > 0 such that‖x − y‖ > ε for all x, y ∈ 6(�), x 6= y,
• there is anR > 0 such that any ball of radiusR in Rn intersects6(�) non-trivially.
The maximal possibleε in the Delone property is equal to the minimal distance between

two points of the Delone set, or more formally

ε(6(�)) = inf{‖x − y‖|x, y ∈ 6(�), x 6= y}
is called the ‘minimal distance’ of the quasicrystal6(�). For simplicity of notation we
often useε(�) instead ofε(6(�)).

Note, that6(�) is also almost a lattice [8, 10], i.e. there exists a finite setF such that

6(�)−6(�) ⊂ 6(�)+ F. (2)

This property assures that the minimal distance is achieved between two points of6(�)

(and not as a limit of a sequence of differences of points).

3. One-dimensional quasicrystals

The main result of this section is a description of the structure of one-dimensional
quasicrystals in general. In particular, we determine the minimal distance between
quasicrystal points as an explicit function of the length of the acceptance interval. The
result is an indispensable tool in the study of quasicrystals in higher dimensions.

On many occasions we make use of the step functionχ : R+ → R+ defined by

χ(d) := τ−k for d ∈ (τ k, τ k+1] k ∈ Z (3)

and plotted on figure 1.
SinceR+ =

⋃
k∈Z(τ

k, τ k+1], the step functionχ is well defined. Note that for any
d > 0,

1

d
< χ(d) 6 τ

d
(4)

χ

(
d

τ

)
= τχ(d). (5)

The following theorem shows that the minimal distance depends on the length of the
acceptance interval and not on its position inR. The proposition states the result for an
open interval only, but a slight modification of the proof yields the rest of the cases (see
remark 3.3).

Theorem 3.1.Let c, d ∈ R, d > 0. Then the minimal distance in one-dimensional
quasicrystal with the acceptance interval(c, c + d) is

ε(c, c + d) = χ(d). (6)
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Figure 1. A fragment of the step functionχ(d) of (3). The points marked on both axes
correspond toτ k , only the exponentsk are shown.

Proof. If x = a + bτ ∈ 6(c, c + d), then

c < x ′ = a + bτ ′ = a − b
τ
< c + d ⇐⇒ b

τ
+ c < a <

b

τ
+ c + d. (7)

For d > 1 we can always find an integera, such that (7) holds. However, ford < 1 there
are someb ∈ Z for which such an integer does not exist.

First, let us consider the cased ∈ ( 1
τ
, 1]. Put

B(d) := {b ∈ Z|∃a ∈ Z, (7) holds}. (8)

For d 6 1 and anyb ∈ Z there exists at most one integera such that (7) is fulfilled. The
following holds

6(c, c + d) =
{[
b

τ
+ c + d

]
+ bτ b ∈ B(d)

}
. (9)

Let us define the sequenceσ of elementspb by

σ :=
{
pb ≡

[
b

τ
+ c + d

]
+ bτ b ∈ Z

}
. (10)

Obviously,6(c, c + d) ⊆ σ . Therefore the minimal distance in6(c, c + d) is greater
or equal to the minimal distance inσ . Since the points ofσ form an increasing sequence,
the minimal distance is recovered between two adjacent elements of the sequence

pb+1− pb =
[
b + 1

τ
+ c + d

]
+ (b + 1)τ −

[
b

τ
+ c + d

]
− bτ > τ. (11)

Thusε(c, c + d) > τ . Next let us show that the equality is achieved.
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SinceZ[τ ] is dense inR, we can find a point of the formnτ −m with m, n ∈ Z close
enough to the point12(dτ + 1) + cτ . More precisely, for allδ > 0 there existsm, n ∈ Z
such that ∣∣∣∣(τn−m)− (dτ + 1

2
+ cτ

)∣∣∣∣ 6 δ. (12)

Takeδ = 1
2(τd − 1) andb = m. From (12) we have

−τd − 1

2
+ τd + 1

2
+ cτ < τn− b < τd − 1

2
+ τd + 1

2
+ cτ

or, equivalently,

b

τ
+ c < b + 1

τ
+ c < n <

b

τ
+ c + d < b + 1

τ
+ c + d.

Sincen is an integer, we haveb, b + 1 ∈ B(d) and[
b + 1

τ
+ c + d

]
=
[
b

τ
+ c + d

]
.

This means thatpb, pb+1 ∈ 6(c, c + d) andpb+1− pb = τ .
To prove the theorem ford ∈ ( 1

τ k+1 ,
1
τ k

], we use the fact thatε(γ6(�)) = |γ |ε(6(�))
for any constantγ and any6(�). Also we use6(τk�) = (τ ′)k6(�) from [1], where�
is a convex set. Thus we obtain

ε(c, c + d) = ε(6(τ k(cτ−k, cτ−k + dτ−k))) = ε((τ ′)k6(cτ−k, cτ−k + dτ−k))
= |τ ′|kε(6(cτ−k, cτ−k + dτ−k)) = 1

τ k
.τ = 1

τ k−1
= χ(d). (13)

�

Let us now observe that the proof provides an answer to the question; how many distinct
tiles occur in a given6(c, c+ d)? Ford ∈ ( 1

τ
, 1] and as6(c, c+ d) of (9) coincides with

σ of (10), which is the case whend = 1, the distance between any two neighbouring
quasicrystal points is simply given by the difference (11). Clearly, (11) admits only two
values,τ andτ + 1, depending on the integer parts of the expression.

Three distinct tiles occur precisely when6(c, c + d) 6= σ . In addition to the two tiles
of the previous case, there is alsopb+2− pb for someb ∈ Z, giving rise to the third tile of
length 2τ + 1.

One arrives at the same conclusions whend ∈ τ k( 1
τ
, 1], arguing similarly as in (13).

Thus for fixed c the 2-tile quasicrystals form a discrete set parametrized byd = τ k,
k = 0, 1, 2, . . ..

Denote the three distinct tiles by letters S (small), M (middle) and L (large). Some of the
structural properties of one-dimensional quasicrystals can be relatively easily demonstrated
using the above remarks and theτ -inflation invariance [1, 6]:

Proposition 3.2.Let 6(c, c+ d) be a one-dimensional quasicrystal withc, d ∈ R, and letk
be an integer, such thatd ∈ (τ k−1, τ k]. Then in6(c, c + d)

—there are never three tiles of the same length adjacent,
—the sequence SS never occurs,
—MM occurs if and only ifd ∈ (2τ k−2, τ k],
—LL occurs if and only ifd ∈ (τ k−1, 2τ k−2),
—S is never adjacent to L,
—the sequence MML never occurs, i.e. MM is necessarily surrounded by S’s.
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Figure 2. Vertically alligned fragments of five one-dimensional quasicrystals6(−r, r) are
shown for 2r = 1, 1

2(1+ 2
τ2 ),

2
τ2 , 1

2(
2
τ2 + 1

τ
), and 1

τ
, illustrating the points (i)–(iv).

Figure 3. A fragment of the quasicrystal6[0, 1]. The thick line between quasicrystal points 0
and 1 marks the exceptional distance of the third type in an otherwise 2-tile quasicrystal.

The following five examples in figure 2 simultaneously illustrate several properties.
(i) The existence of the 2- and 3- tile quasicrystals.
(ii) The constancy of the minimal distance within each step ofχ(d) of (3) and (6).
(iii) The fact that the points added, when the acceptance interval increases, split the

longest tiles into two.
(iv) The tiling sequence is not arbitrary. See for example proposition 3.2.
The theorem was formulated for an open acceptance interval(c, c + d). If a boundary

point is not inZ[τ ], adding it to the window does not change the quasicrystal. However,
if for examplec ∈ Z[τ ], then6[c, c+ d) = 6(c, c+ d)∪ {c′}. This fact has the following
implications for the minimal distances.

Remark 3.3.If d 6= τ k or c /∈ Z[τ ], then

ε(c, c + d) = ε[c, c + d) = ε(c, c + d] = ε[c, c + d] = χ(d). (14)

If d = τ k andc ∈ Z[τ ], then

ε(c, c + τ k) = ε[c, c + τ k) = ε(c, c + τ k] = χ(d) (15)

ε[c, c + τ k] = τ−1χ(d). (16)

In most cases addition of the boundary points to the acceptance interval does not change
the minimal distance (equations (14), (15)). A special situation arises in the case (16): the
minimal distance is smaller thanχ(d) by τ−1, but that happens in precisely one tile of the
entire quasicrystal.

The quasicrystal6[0, 1] is shown in figure 3. It is an important quasicrystal in its own
right [6]. Here we use it to illustrate the case (16): the unique smallest tile occurs between
0 and 1.

Another example of a one-dimensional quasicrystal is the set

Zτ =
{
x =

k∑
i=0

xiτ
i

∣∣∣∣k ∈ N, xi ∈ {0, 1}, xixi+1 = 0

}
of all numbers integer in theτ -expansion [3, 4]. It can be identified with the positive part
of the cut and project quasicrystal with the acceptance interval(−1, τ ).
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4. One-dimensional subquasicrystals in quasicrystals of higher dimension

Any straight line containing at least two points ofM, contains infinitely many of them.
Under the star map these points are transformed into points ofM∗, forming a straight line
there. The minimal distance in6(�) ⊂ Rn is a distance between two quasicrystal points.
Therefore the determination of the minimal distance in6(�) reduces to a choice of an
appropriate one-dimensional problem, among the many, one finds in6(�). A description
of subsets of6(�) found on straight lines is the aim of this section.

In general, distances between such points are not inZ[τ ]. However, they can be linearly
mapped intoZ[τ ] ⊂ R. More precisely, one has the following lemma.

Lemma 4.1.Let 6(�) ⊂ Rn be a cut and project quasicrystal andP be a straight line in
Rn containing at least two points of6(�). Then there exists a linear mapping8 : R→ Rn
and a bounded intervalJ ⊂ R, such that

P ∩6(�) = 86(J ).

Proof. Let x, y ∈ 6(�) ∩ P . Since 6(�) is a subset of theZ[τ ]-module M =∑n
i=1Z[τ ]αi , we can writex = x1α1 + · · · + xnαn and y − x = h1α1 + · · · + hnαn,

wherex1, . . . , xn, h1, . . . , hn ∈ Z[τ ]. Let us puts = gcd{h1, . . . , hn}. The value ofs is
well defined becauseZ[τ ] is a Euclidean domain. Putki := hi/s for i = 1, . . . , n and
k = k1α1+ · · · + knαn. Then gcd{k1, . . . , kn} = gcd{k′1, . . . , k′n} = 1.

First we prove that

P ∩M = {x + tk|t ∈ Z[τ ]}. (17)

Supposez ∈ P∩M, i.e.z = (x1+tk1)α1+· · ·+(xn+tkn)αn ∈ M. Sincex1+tk1 ∈ Z[τ ],
we havet ∈ Q[τ ] and thust can be written in the formt = p

q
, wherep, q ∈ Z[τ ] and

gcd{p, q} = 1. The propertyxi+tki = xi+ p

q
ki ∈ Z[τ ] implies thatq dividespki . Together

with the fact that gcd{p, q} = 1, it shows thatq divides ki for all i = 1, . . . , n. Henceq
divides gcd{k1, . . . , kn} = 1. Consequently,q is a divisor of unity, i.e.q = τ k for some
k ∈ Z, andt = p

q
∈ Z[τ ] as required.

Now, define the linear mapping8 : R→ Rn by

8(t) := x + tk. (18)

From (17) we see that8, restricted toZ[τ ], is a bijectionZ[τ ] ontoP ∩M. Denoting byQ
the straight line containing pointsx∗ andy∗, by the same reasonQ∩M = {x∗+tk∗|t ∈ Z[τ ]}
and the linear mapping

9(t) := x∗ + tk∗ (19)

restricted toZ[τ ], is a bijectionZ[τ ] ontoQ ∩M.
Note that

9−1(� ∩Q ∩M) = 9−1(� ∩Q) ∩9−1(Q ∩M) = 9−1(� ∩Q) ∩ Z[τ ].

Since� ∩ Q is an intersection of two convex sets and because9 is linear, we find that
9−1(� ∩Q) = J is an interval inR.

Define6 := {t ∈ R|8(t) ∈ 6(�)}. Then

t ∈ 6 ⇐⇒ (t ∈ Z[τ ] and8(t) ∈ 6(�))⇐⇒ (t ∈ Z[τ ] and x + tk ∈ 6(�))
⇐⇒ (t ∈ Z[τ ] and x∗ + t ′k∗ ∈ �)⇐⇒ (t ∈ Z[τ ] and9(t ′) ∈ �)
⇐⇒ 9(t ′) ∈ � ∩Q ∩M ⇐⇒ t ′ ∈ 9−1(� ∩Q ∩M) = J ∩ Z[τ ].

(20)
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It means that6 is a one-dimensional cut and project quasicrystal with acceptance window
J . Moreover, from the definition of6, we have6 = 8−1(P ∩6(�)) which completes the
proof. �

Let us point out that the proof enables us to determine the minimal distance inP ∩6(�).
For that we mapP ∩ 6(�) ⊂ Rn into the one-dimensional quasicrystal6(J ) ⊂ Z[τ ],
according to lemma 4.1. Its acceptance intervalJ ⊂ R determines the minimal distance
of 6(J ). Since the map is linear, the minimal distance of6(J ) can be mapped back into
P ∩6(�).

In order to get an explicit form forε(P ∩ 6(�)), we proceed as follows, using the
notations from the proof of lemma 4.1.

Denote byd the lengths of the line segmentI = Q∩�. From the definition (19) of9
we obtain, that the length of intervalJ is d/‖k∗‖, wherek is a vector in the directionP
with relatively prime coordinates inZ[τ ]. Suppose thatI is not closed with respect to the
straight lineQ, thenε(J ) = χ(d/‖k∗‖), see proposition 3.1. Using the definition (18) of
8, we have

ε(P ∩6(�)) = ‖k‖χ
(

d

‖k∗‖
)
. (21)

This form of ε(P ∩ 6(�)) will be essential for the proof of the main theorem of the next
section. The minimal distances given by (21) are illustrated in figure 4.

We consider an example of a two-dimensional quasicrystal. As the correspondingZ[τ ]-
moduleM we take theZ[τ ]-span of12, the root system of the non-crystallographic Coxeter
groupH2. It consists of the ten points±ζ j in C, whereζ = e2iπ/5 andj = 0, . . . ,4. The
basis ofZ[τ ]-module can be chosen as the vectors (simple roots)

α1 = 1 and α2 = ζ 2 (22)

with the star map defined by

α∗1 = 1 and α∗2 = ζ 4. (23)

The acceptance window� is the disk of radius 1, centred at the origin. In one of the
examples in figure 4, the norm‖k‖ = 1, while in the others it is not inZ[τ ].

5. Higher dimensional quasicrystals

The general formula for the minimal distanceε(�) in theorem 5.2 is not particularly practical
to use. Therefore for special�’s which are not far from ann-dimensional ball (27), we
provide a simpler expression for the minimal distance, which allows one to obtain specific
value for various� (see for example corollary 5.5, 5.4).

In addition we provide lower and upper bounds for the minimal distance, which are easy
to use even if the exact expressions are difficult to evaluate for� of complicated shapes.
It is curious to note that the lower bound depends on a diameter of�, while the upper one
is a function of the volume of�.

The quasicrystals we consider are found in a generalZ[τ ]-lattice M, however for
demonstrations in this section we need to use the following additional requirement.

‖k‖2 ∈ Z[τ ] for all k = k1α1+ · · · + knαn with k1, . . . , kn ∈ Z[τ ]. (24)

This requirement is not particularly restrictive. In most cases one considers suchM, where
scalar products take values inZ[τ ]. In those cases (24) holds automatically.
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Figure 4. A selection of points of a two-dimensional quasicrystal belonging to different straight
lines illustrate that any intersection of a line with ann-dimensional quasicrystal determines a
one-dimensional quasicrystal, possibly up to rescaling by a factor generally not inZ[τ ]. Only
the horizontal example corresponds to the directionk with ‖k‖ = 1.

It was pointed out in connection with one-dimensional subquasicrystals that the question
about the minimal distance is a one-dimensional problem (21). The following definition
provides a suitable measure of linear sizes of� in different directions, which then is used
in place ofd in (21).

Definition 5.1.Let� ⊂ Rn be a convex bounded set and letk ∈ M. The thickness th(�, k)
of the set� in the directionk is

th(�, k) := sup{‖y − x‖|x, y ∈ �, y − x = tk for somet ∈ R}. (25)

The diameter diam(�) is given as the supremum of th(�, k) over all directionsk ∈ M.
The minimal distance in6(�) is the smallest of the minimal distances (21) on all

straight lines through6(�).

Theorem 5.2.Let � ⊂ Rn be an open convex bounded set. Then

ε(�) = min

{
‖k‖χ

(
th(�, k∗)
‖k∗‖

)
k ∈ M, k 6= 0

}
.

Proof. Since6(�) is almost a lattice (2), the value of inf{‖x − y‖|x, y ∈ 6(�), x 6= y}
is achieved on somex0, y0 ∈ 6(�). The distance between these points must be equal to
the minimal distance inP ∩ 6(�), whereP is a line containingx0, y0. Thus we can use
(21), which requires that the vectork = k1α1+ · · · + knαn is in the ‘normalized form’, i.e.
gcd{k1, . . . , kn} = 1. Nevertheless, leth = sk, wheres 6= τ k is the greatest common divisor
of coordinates ofh, and wherek is a ‘normalized’ vector. Then th(�, h) = th(�, k) and

‖h‖χ
(

th(�, h)

‖h∗‖
)
> ‖h‖‖h

∗‖
th(�, h)

= |ss ′| ‖k‖‖k
∗‖

th(�, k)
> |ss

′|
τ
‖k‖χ

(
th(�, k)

‖k∗‖
)
. (26)
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Here we have used (4).
Sincess ′ is a non-zero integer6= ±1 (s is not a divisor of unity), we have|ss ′| > 2.

Therefore

|ss ′|
τ
‖k‖χ

(
th(�, k)

‖k∗‖
)
> ‖k‖χ

(
th(�, k)

‖k∗‖
)
.

Thus ‘non-normalized’ vectors do not change the minimum distance. �

An � slightly different from a ball, admits a simpler expression for the minimal distance.
More precisely, one has the following theorem.

Theorem 5.3.Let M beZ[τ ]-module satisfying (24) and let� be an open bounded convex
set. Suppose that

sup{th(�, k)|k ∈ M}
inf{th(�, k)|k ∈ M} 6

2

τ
(27)

then

ε(�) = min{χ(th(�, k))|k ∈ M, ‖k‖‖k∗‖ = 1}.

Proof. Since ‖h∗‖2 = (‖h‖2)′ ∈ Z[τ ], we have ‖h∗‖2‖h‖2 ∈ Z. Suppose that
‖h‖2‖h∗‖2 > 1. Then‖h‖2‖h∗‖2 > 4 because 2 and 3 are prime inZ[τ ] and hence it
is impossible to write them as a product ofss ′. The theorem follows immediately from the
inequalities

‖h‖χ
(

th(�, h∗)
‖h∗‖

)
> ‖h‖‖h

∗‖
th(�, h∗)

> 2

th(�, h∗)
> τ

th(�, k∗)
> χ(th(�, k∗))

which are valid forh, k ∈ M such that‖h‖‖h∗‖ 6= 1 and‖k‖‖k∗‖ = 1. �

The equality‖k‖‖k∗‖ = 1 with the assumption (24) implies‖k‖2 = τ j for somej ∈ Z.
This leads to a system of Diophantine equations for the coordinateski ∈ Z[τ ] of k. For
example forM2, theZ[τ ]-module ofH2 described at the end of section 4, there is exactly
10 solutions (up to aτ j multiple) to the system, each solution corresponding to one of the
roots from12.

Corollary 5.4. Let M = Z[τ ]α1+ Z[τ ]α2, whereαi is defined by (22) and star mapped by
(23). Suppose that an open bounded convex set� satisfies (27) then

ε(�) = χ(max{th(�, k)|k ∈ 12}).
The exact value of the minimal distance is obtained for the most symmetric� ∈ Rn.

Corollary 5.5. Denote byB(x, r) an open ball with centrex and radiusr. Then the minimal
distance in the quasicrystal6(B(x, r)) is given by

ε(B(x, r)) = χ(2r). (28)

Let us now find bounds for the minimal distance which could be used when the exact
value cannot be simply calculated. A lower bound is found more easily.

Corollary 5.6. LetM beZ[τ ]-module satisfying (24) and let� be an open bounded convex
set. Then

ε(�) > χ(diam(�)). (29)
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The previous corollary contains proposition 3.1 in [12]. The proofs, however, are different.
Proof. Let us estimate from below the value of‖k‖χ(th(�, k∗)/‖k∗‖). Recall relations (4)

and (5). If‖k‖2‖k∗‖2 = 1, then‖k‖ = τ k, so that

‖k‖χ
(

th(�, k∗)
‖k∗‖

)
= ‖k‖‖k∗‖χ(th(�, k∗)) = χ(th(�, k∗)) > χ(diam(�)).

If ‖k‖2‖k∗‖2 > 1, one has

‖k‖χ
(

th(�, k∗)
‖k∗‖

)
> ‖k‖‖k

∗‖
th(�, k∗)

> 2

diam(�)
>

τ

diam(�)
> χ(diam(�)).

�

The upper bound is given in the following theorem based on the theorem of
Minkowski [9]. We need the following notation. Lete1, . . . , en be the standard orthonormal
basis ofRn andα1, . . . , αn a basis ofRn. Denote

| detα| := |(αi |ej )|.
Theorem 5.7.Let � ⊂ Rn be a convex centrally symmetric set. Then

ε(�) 6 4(2τ − 1)√
π

· n

√
0(n2 + 1)| detα|| detα∗|

vol(�)

where0 is the gamma function.

Proof. For anyδ > 0 we can define a set̃� ⊂ R2n by

�̃ =
{
(x1, . . . , xn, y1, . . . , yn) ∈ R2n

∣∣∣∣ n∑
i=1

(xi + τ ′yi)α∗i ∈ �,
∥∥∥∥ n∑
i=1

(xi + τyi)αi
∥∥∥∥ 6 δ

}
.

Let us compute the volume of̃�

vol(�̃) =
∫
�̃

dx1 . . .dxn dy1 . . .dyn = (2τ − 1)−n
∫
u∈�,v∈B(0,δ)

du1 . . .dun dv1 . . .dvn

= (2τ − 1)−n
vol(�)

| detα∗| ·
vol(B(0, δ))

| detα|
= (2τ − 1)−n

vol(�)

| detα∗|| detα| ·
πn/2δn

0(n/2+ 1)
.

Here we used the substitutionsui = xi + τ ′yi and vi = xi + τyi with the corresponding
Jacobian(τ 2 + 1)/τ = 2τ − 1. The vectors6uiα∗i and6viαi are denoted respectively by
u andv. The volume of a ball inRn, with radiusδ, is πn/2δn/0(n/2+ 1).

Next we chooseδ such that vol(�) > 22n = 4n, i.e.

δ >
4(2τ − 1)√

π
.
n

√
0(n2 + 1)| detα|| detα∗|

vol(�)
. (30)

Since �̃ is a convex centrally symmetric set (because� and the ball are) with volume
> 22n, we can use the Minkowski theorem, according to which there exists a non-zero point
in �̃ with integer coordinates. There existsx = (x1, . . . , xn) and y = (y1, . . . , yn), with
xi, yi ∈ Z, such that

‖6(xi + τyi)αi‖ 6 δ and6(xi + τ ′yi)α∗i ∈ �⇐⇒ 6(xi + τyi)αi ∈ 6(�).



1550 Z Masáková et al

Figure 5. Examples ofH2-quasicrystals, drawn in the same scale, with elliptic acceptance
windows of volumeπ , centred at the origin. Directionsk of the long elliptic axes are shown
in each case; (a) and (b) differ by the length of the axes (20 and 50 respectively); (a), (c), and
(d) differ only by orientation of the ellipse.

Since� is convex centrally symmetric, the zero vector 0= 0∗ lies in� and thus 0∈ 6(�).
Thus we have found two points of quasicrystal6(�) with distance< δ. This means,

that ε(�) 6 δ for all δ satisfying (30). �

In the examples in figure 5 we illustrate the variety ofH2-quasicrystals, one obtains
by changing the acceptance window, and the values of the upper and lower bounds for the
minimal distance. In particular,6(�) with the same vol(�), have the same upper bound,
given by the following corollary (cf proposition 4.1 of [12]).

Corollary 5.8. In the plane withZ[τ ]-module based on12, we have| detα|·| detα∗| = √5/4
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and thus

ε(�) 6 2(2τ − 1)√
π

4
√

5√
vol(�)

.

The lower bound is taken simply as (29) for any�. Its value depends on the diam(�).
Note that the gap betweenε(�) andχ(diam(�)) in (29) may be quite large. That is the
case, for example, when the convex set� is cigar-like, long and narrow, oriented along
the directionk, and with large‖k‖ · ‖k∗‖. Therefore in figure 5 we show quasicrystals with
long narrow elliptic�. However, in the case of circular�, one hasε(�) = χ(diam(�));
such a quasicrystal can be seen in figure 4.

As the last example let us recall the well known rhombic Penrose tiling of the plane.
The minimal distance between vertices of the tiles is clearly the short diagonal across the
narrow tile. However, a more interesting problem is the rhombic Penrose quasicrystal,
viewed as a union of four subquasicrystals each with its own convex� (for details see
[11, section 4] and figure 2 of [6]). Then we can use our results to determine the minimal
distance in each of them. There are two distinct minimal distances each occuring in two of
the subquasicrystals. In the union of the four, they turn out to be the shorter diagonal of
the thick Penrose rhomb and the longer diagonal of the thin one.
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